婷婷久久香蕉五月综合加勒比_91精品国产91久久久久福利_激情久久久久久久久久_欧洲人妻丰满av无码久久不卡

技術文章

Technical articles

當前位置:首頁技術文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點擊次數:2965

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細的文獻,請到中科院一區  影響因子12    感謝所有的科研奉獻者辛勞的付出。

婷婷久久香蕉五月综合加勒比_91精品国产91久久久久福利_激情久久久久久久久久_欧洲人妻丰满av无码久久不卡

      <em id="kf52g"><noframes id="kf52g">
      <dd id="kf52g"><dfn id="kf52g"></dfn></dd>
      <em id="kf52g"></em>

      <dl id="kf52g"></dl>

      亚洲美女啪啪| 亚洲欧美综合v| 亚洲一区二区三区视频播放| 亚洲日本欧美日韩高观看| 亚洲国产精品久久91精品| 亚洲二区在线| 日韩视频不卡| 欧美一级淫片播放口| 久久av红桃一区二区小说| 久久久久久成人| 亚洲国产影院| 日韩视频在线观看免费| 国产精品99久久99久久久二8 | 国产综合在线视频| 欧美黄色成人网| 亚洲国产一区二区视频| 一区二区三区四区五区精品视频| 亚洲欧美激情视频| 美国十次成人| 国产精品美女久久久久av超清 | 亚洲国产欧美日韩| 在线视频精品一区| 久久综合九色综合久99| 亚洲欧洲在线免费| 欧美伊人影院| 欧美高清在线播放| 国内外成人免费激情在线视频网站| 亚洲日本一区二区三区| 久久成人18免费网站| 亚洲国产毛片完整版 | 欧美国产极速在线| 亚洲在线观看免费视频| 欧美a一区二区| 国产一区二区三区高清播放| 一本色道久久精品| 欧美电影在线观看完整版| 午夜精品久久久久久久男人的天堂| 欧美激情一区二区三区高清视频| 国产主播一区二区| 久久爱www.| 性xx色xx综合久久久xx| 欧美天天在线| 亚洲深夜福利| 亚洲另类视频| 欧美激情亚洲国产| 亚洲国产精品va| 久久婷婷麻豆| 欧美一区二区三区精品| 国产精品激情电影| 亚洲一区二区在线看| 最新国产成人在线观看| 欧美激情五月| 中文网丁香综合网| 日韩视频一区| 国产精品嫩草99av在线| 亚洲在线免费视频| 亚洲午夜激情网站| 国产精品福利片| 亚洲在线一区| 9国产精品视频| 欧美午夜免费影院| 午夜精品久久久久久99热| 亚洲影视九九影院在线观看| 欧美性天天影院| 欧美一区二区三区男人的天堂| 亚洲精品一区二区三区四区高清 | 国产毛片一区二区| 亚洲欧美日韩一区在线| 亚洲欧美乱综合| 国产精品视频不卡| 久久精品一区二区三区中文字幕| 亚洲欧美日韩视频二区| 国产午夜精品麻豆| 裸体一区二区三区| 欧美韩国日本综合| 亚洲免费在线精品一区| 欧美一区观看| 亚洲精品孕妇| 在线中文字幕一区| 国产日本欧美一区二区| 蜜臀99久久精品久久久久久软件| 午夜精品美女久久久久av福利| 国产一区二区中文字幕免费看| 欧美 日韩 国产一区二区在线视频 | 亚洲日本欧美| 国产精品视频免费观看| 久久精品国产久精国产一老狼| 久久国产福利| 日韩网站免费观看| 午夜免费电影一区在线观看| 亚洲成人在线视频网站| 在线中文字幕日韩| 亚洲精品久久久一区二区三区| 亚洲精品欧美| 国产精品成人一区二区网站软件 | 欧美一区二区三区精品| 亚洲日本无吗高清不卡| 亚洲综合99| 亚洲人成艺术| 篠田优中文在线播放第一区| 一本色道久久综合狠狠躁篇的优点 | 亚洲高清视频一区| 国产精品久久久久一区二区三区共 | 国产精品系列在线播放| 欧美高清视频一区二区三区在线观看| 欧美日韩国产综合网| 久久偷看各类wc女厕嘘嘘偷窃| 欧美国产先锋| 亚洲尤物视频在线| 国产午夜精品在线观看| 欧美国产日韩精品免费观看| 欧美午夜欧美| 亚洲国产专区校园欧美| 尤妮丝一区二区裸体视频| 亚洲少妇自拍| 99国内精品久久| 久久精品国产一区二区三区免费看| 亚洲天堂成人| 欧美日本国产视频| 亚洲欧洲综合| 亚洲精品九九| 欧美风情在线| 免费日韩精品中文字幕视频在线| 国产精品日韩电影| 亚洲特黄一级片| 亚洲视频在线播放| 欧美另类视频| 91久久精品国产| 91久久在线视频| 快播亚洲色图| 欧美黑人在线观看| 91久久久久| 欧美黑人在线播放| 亚洲高清视频在线| 亚洲精品美女久久久久| 欧美成人国产| 亚洲日韩中文字幕在线播放| 最新中文字幕亚洲| 欧美v日韩v国产v| 亚洲福利视频二区| 日韩视频一区二区在线观看| 欧美大片在线观看一区| 欧美成人精品在线观看| 亚洲三级视频| 欧美日韩直播| 亚洲欧美综合一区| 久久天天躁狠狠躁夜夜av| 亚洲丶国产丶欧美一区二区三区| 久久夜色精品亚洲噜噜国产mv | 国产亚洲在线| 久久综合狠狠综合久久激情| 欧美成人一区在线| 日韩亚洲一区在线播放| 欧美亚洲成人精品| 性亚洲最疯狂xxxx高清| 欧美成人国产| 亚洲一区二区三区影院| 国产女人精品视频| 久久综合久久久| 99riav国产精品| 久久裸体艺术| 一二三区精品| 国产区亚洲区欧美区| 久久蜜桃香蕉精品一区二区三区| 亚洲夫妻自拍| 久久久亚洲综合| av成人福利| 国产精品青草久久| 免费91麻豆精品国产自产在线观看| 亚洲每日在线| 麻豆久久精品| 性做久久久久久免费观看欧美| 在线观看国产一区二区| 欧美三级第一页| 久久性天堂网| 亚洲综合欧美| 狼人天天伊人久久| 欧美日韩在线播放三区四区| 日韩视频第一页| 欧美日韩国产综合新一区| 99精品国产一区二区青青牛奶| 亚洲小说春色综合另类电影| 国产精品亚洲片夜色在线| 久久久av网站| 日韩视频免费观看| 久久免费视频一区| 一本一本久久| 亚洲电影免费在线观看| 欧美日韩视频免费播放| 久久久久久久久久久久久9999| 夜夜嗨av一区二区三区网页| 欧美国产91| 老司机精品视频一区二区三区| 亚洲尤物在线| 一区二区三区欧美成人| 亚洲经典三级| 亚洲福利在线看| 红桃视频国产精品| 国产日韩欧美在线播放| 国产精品成人一区二区网站软件 |